Mutation-selection balance: ancestry, load, and maximum principle.
نویسندگان
چکیده
We analyze the equilibrium behavior of deterministic haploid mutation-selection models. To this end, both the forward and the time-reversed evolution processes are considered. The stationary state of the latter is called the ancestral distribution, which turns out as a key for the study of mutation-selection balance. We find that the ancestral genotype frequencies determine the sensitivity of the equilibrium mean fitness to changes in the corresponding fitness values and discuss implications for the evolution of mutational robustness. We further show that the difference between the ancestral and the population mean fitness, termed mutational loss, provides a measure for the sensitivity of the equilibrium mean fitness to changes in the mutation rate. The interrelation of the loss and the mutation load is discussed. For a class of models in which the number of mutations in an individual is taken as the trait value, and fitness is a function of the trait, we use the ancestor formulation to derive a simple maximum principle, from which the mean and variance of fitness and the trait may be derived; the results are exact for a number of limiting cases, and otherwise yield approximations which are accurate for a wide range of parameters. These results are applied to threshold phenomena caused by the interplay of selection and mutation (known as error thresholds). They lead to a clarification of concepts, as well as criteria for the existence of error thresholds.
منابع مشابه
A maximum principle for the mutation-selection equilibrium of nucleotide sequences.
We study the equilibrium behaviour of a deterministic four-state mutation-selection model as a model for the evolution of a population of nucleotide sequences in sequence space. The mutation model is the Kimura 3ST mutation scheme, and the selection scheme is assumed to be invariant under permutation of sites. Considering the evolution process both forward and backward in time, we use the ances...
متن کاملOptimal bacteriophage mutation rates for phage therapy.
The mutability of bacteriophages offers a particular advantage in the treatment of bacterial infections not afforded by other antimicrobial therapies. When phage-resistant bacteria emerge, mutation may generate phage capable of exploiting and thus limiting population expansion among these emergent types. However, while mutation potentially generates beneficial variants, it also contributes to a...
متن کاملDynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle
In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...
متن کاملMathematical Biology Mutation, selection, and ancestry in branching models: a variational approach
We consider the evolution of populations under the joint action of mutation and differential reproduction, or selection. The population is modelled as a finite-type Markov branching process in continuous time, and the associated genealogical tree is viewed both in the forward and the backward direction of time. The stationary type distribution of the reversed process, the so-called ancestral di...
متن کاملThe Strength of Selection against Neanderthal Introgression
Hybridization between humans and Neanderthals has resulted in a low level of Neanderthal ancestry scattered across the genomes of many modern-day humans. After hybridization, on average, selection appears to have removed Neanderthal alleles from the human population. Quantifying the strength and causes of this selection against Neanderthal ancestry is key to understanding our relationship to Ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theoretical population biology
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2002